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Abstract—Multicore systems open the door to compression in 
Grid environments with high-speed networks to enable "faster 
than network speed" transfers. GridFTP is a data transport 
protocol that can break up its transfer payload in such a way that 
streaming it through multiple cores is possible. With the 
additional parallel processing power added by multicore systems 
it is possible to pipeline compression and packet switching in such 
a way that seemingly faster than network speed transfers are 
possible. In this paper, we present the Globus XIO compression 
driver, which enables GridFTP to compress data on-the-fly. We 
also present a detailed performance study of the compression 
driver using XIOPerf, an Iperf-like tool and GridFTP.   

Index Terms— GridFTP, Compression, High-speed transfers 

I.  INTRODUCTION 
The need to move data faster is ever increasing. The use of 

compression to improve data transfer rates is not a new idea 
[1]. But this has not been adopted as a standard feature for 
data movement in Grid [2] environments. Also, for sites 
connected with by high-speed networks such as ESnet [3] and 
Internet2 [4], the network was not the bottleneck most of the 
time. But as host systems with many cores emerge, 
compression might provide benefits even on these high-speed 
networks. We have developed a compression driver for the 
Globus XIO framework [5] that compresses data as it is sent, 
and decompress, as it is received. The driver can under 
virtually any circumstances reduce network load by reducing 
the amount of data actually transferred. Under the right 
circumstances it can also help individual endpoints achieve 
higher-than-network speeds. This study will attempt to 
investigate under which circumstances this occurs, and when 
the driver is downright harmful. The answer to this question 
depends primarily on four factors: 

• System resources - assuming infinite system resources 
and finite network bandwidth the driver will virtually always 
be beneficial or have no effect. In the case where the 
transferred data is completely random, the amount of data 
transferred will increase by a few hundreds of a percent. We 
will not consider this a factor because of the miniscule amount 
of possible overhead, and because of the relative rarity of 
transferring completely random data. 

• Network bandwidth - assuming infinite bandwidth and 
finite system resources at the end-points, the driver will 
virtually always be a bottleneck to some extent. 

• Block size - the driver compresses one block at a time 
and compression algorithms behave differently depending on 
block size. 

• Data type - certain types of data (such as plain text) 
compresses nicely while others (such as random and already 
compressed data) do not.  

We present a detailed performance study of the 
compression driver using XIOPerf [6], an Iperf-like tool and 
GridFTP [7,8], and provide a number of insights. The rest of 
the paper is organized as follows. In Section II, we provide 
background on GridFTP and Globus XIO. In Section III, we 
describe the compression driver. In Section IV, we present the 
experimental results and describe the conclusions drawn from 
the experiments in Section V. In Section VI, we discuss future 
work. We summarize in Section VII. 
 

II. BACKGROUND 
In this section we provide details on GridFTP and the Globus 
eXtensible Input/Output (XIO) framework. 

A. GridFTP 
The GridFTP protocol is a backward-compatible extension 

of the legacy RFC959 FTP protocol. It maintains the same 
command/response semantics introduced by RFC959. It also 
maintains the two-channel protocol semantics. One channel is 
for control messaging (the control channel), such as requesting 
what files to transfer and the other is for streaming the data 
payload (the data channel). Once a client successfully forms a 
control channel with a server, it can begin sending commands 
to the server. In order to transfer a file, the client must first 
establish a data channel. This task involves sending the server 
a series of commands on the control channel describing 
attributes of the desired data channel. Once these commands 
are successfully sent, a client can request a file transfer. At this 
point a separate data channel connection is formed using all 
the agreed-upon attributes, and the requested file is sent across 
it. 
 

In standard FTP, the data channel can be used to transfer 
only a single file. Subsequent transfers must repeat the data 
channel setup process. GridFTP modifies this part of the 
protocol to allow many files to be transferred across a single 
data channel. This enhancement is known as data channel 



caching. GridFTP also introduces other enhancements to 
improve performance over the standard FTP mode. For 
example, parallelism and striping allow data to be sent over 
several independent data connections and reassembled at the 
destination.  
  

Globus GridFTP is widely used to move large volumes of 
data over the wide area network. The XIO-based Globus 
GridFTP framework makes it easy to plug in other transport 
protocols. The Data Storage Interface [9] allows for easier 
integration with various storage systems. It supports non-TCP-
based protocols such as UDT [10,11] and RDMA [12]. It also 
provides advanced capabilities such as concurrency [13] 
multilinking [14] and transfer resource management [15].  

B. Globus XIO 
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Figure 1. Typical application interaction with various 
devices. 
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Figure 2. Application interaction with various devices via 
Globus XIO. 

XIO is an extensible and flexible I/O library written for use 
with the Globus Toolkit. XIO is written in C programming 
language and provides us with one API that currently supports 
many different wire protocols. All implementations of these 
protocols are encapsulated as drivers that are modular. 

GridFTP uses the XIO interface for network and disk I/O 
operations. The XIO framework presents a single, standard 
open/close, read/write interface to many different protocol 
implementations. The protocol implementations, called 
drivers, are responsible for manipulating and transporting the 
user’s data. Drivers are grouped into a stack. When an I/O 
operation is requested, the XIO framework passes the 
operation request down the driver stack. An XIO driver can be 

thought of as a modular protocol interpreter that can be 
plugged into an I/O stack without concern about the 
application using it. This modular abstraction is what allowed 
us to achieve our success here without disturbing the 
application’s tested code base and without forcing endpoints to 
run new and unfamiliar code. 

 

III. COMPRESSION DRIVER 
There are two types of drivers in XIO - transform drivers 

and transport drivers. Transport drivers are those that actually 
move data into or out of the process space. Examples of this 
are TCP and UDP. Transform drivers are those that 
manipulate, examine, frame, or change the data, or in other 
words, drivers that take any action other than moving the data 
across the process boundary. Examples of this are 
compression and logging. 

 
The compression driver performs compression and 

decompression of data for XIO. It supports zlib and lzo 
compression algorithms. It is designed with ease of further 
development in mind - adding different methods of 
compressing data is straightforward. Like any XIO driver, the 
compression driver implements the open, close, read and write 
functions. The driver is designed in such a way that the code 
that handles various aspects of the communication with XIO 
and the code that manipulates the data are clearly abstracted. 
These are entirely separate entities; the block functionality 
does not know and does not care what the data handling 
functions does with the data, as long as they fulfill certain 
requirements. This separation makes it easier to add new 
compression strategies. 

 

IV. EXPERIMENTAL RESULTS 
The experimental results were obtained using three 

different hardware configurations. Configuration 1: AMD 
Athlon 64 X2 3800+, Configuration 2: Intel Core2 Quad 
Q9300 Configuration 3: 2 Intel XEON 2.0GHz. In all 
configurations the hosts where connected by a 100Mbps local 
area network. 

We used the following datasets for our experiments: 
• ASCII - plain text. Original file consisted of 400MB of 

US census data. A common file type that is very compressible. 
• Binary - consists of various software libraries. A common 

type of data that is somewhat compressible. 
• MPEG - an MPEG encoded movie. This was used as an 

example of already compressed data, which will therefore be 
difficult to compress further. 

• Random - a file consisting of random data created from 
/dev/urandom. This is used to establish a lower bound for 
compressible data. 

• Zero - a file consisting entirely of zeros created from 
/dev/zero. This is used to establish an upper bound for 
compressible data. 

Each file was 1.2GB in size. In the case of the ASCII and 
binary data, the original files were concatenated to fit this size. 



The original files were several hundred MBs in size, which 
ensures that no unfair advantage was given to the compression 
algorithms due to the repetition of data. 

 
The tests were performed using both the zlib and LZO 

compression libraries. In both cases the default compression 
level was used. The tests where done in a network 
environment which at times may have been used by others. To 
ensure that this did not affect the results, the tests where done 
during a time of year and times of day when the network could 
be expected to see minimal activity. Further, each test was run 
ten times and the results were taken as the average of each set 
of tests. In total, these results are the product of several days of 
network time. 

 
The results were obtained using XIOPerf and GridFTP. 

The XIOPerf results were obtained using configuration 1 and 
2. Configuration 3 was used for the GridFTP results. A brief 
description of XIOPerf is given below. 
 

A. XIOPerf 
XIOPerf, a network protocol testing and evaluation tool. 

XIOPerf is a command line program written on top of Globus 
XIO with a simple and well-defined interface to many 
different protocol implementations. XIOPerf was created to 
give users a way to quickly and easily experiment with an 
open-ended set of protocols over real networks to determine 
which will best suit their needs. XIOPerf presents a similar 
interface to that of IPerf. The main difference between IPerf 
and XIOPerf is that while IPerf is limited to TCP and UDP, 
XIOPerf is written on a framework that allows the user to plug 
in arbitrary protocol implementations. 
 

B. Compression Ratios 
Tables 1 and 2 show the compressed size of each type of 

data when transferred at a block size of 16KB for zlib and lzo 
respectively. In other words, this is the amount of data actually 
sent across the network when using the Compression Driver to 
transfer these 1.2GB files. 

 
Table 1: Compression ratio for zlib 

 

Table 2: Compression ratio for lzo 

 

C. XIOPerf Results for zlib Compression 
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Figure 3: Performance comparison of compression driver 
(zlib) + TCP driver with TCP driver alone for ASCII data 
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Figure 4: Performance comparison of compression  (zlib) 
+ TCP driver with TCP driver alone for Binary data 
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Figure 5: Performance comparison of compression (zlib) 
+ TCP driver with TCP driver alone for MPEG data 
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Figure 6: Performance comparison of compression (zlib) 
+ TCP driver with TCP driver alone for Randon data 

1 2 4 8 16 32 64 128 256 512 1024 2048
−60

−40

−20

0

20

40

60

80

100

120
ASCII data − zlib − 100 Mbit network

Blocksize (KiB)
Sp

ee
d 

re
la

tiv
e 

to
 T

C
P−

dr
iv

er
 o

nl
y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Binary data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d 
re

la
tiv

e 
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
MPEG data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d 
re

la
tiv

e 
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Random data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d 
re

la
tiv

e 
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−100

0

100

200

300

400

500
Zero data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d 
re

la
tiv

e 
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

 

Figure 7: Performance comparison of compression driver 
(zlib) + TCP driver with TCP driver alone for Zero data 

Figures 3 through 7 show the performance of using 
compression driver using zlib algorithm on top of the TCP 
driver in Globus XIO relative to that of using TCP driver 
alone, for various types of datasets. The results are mostly on 
the expected lines with zero files getting the big performance 
boost followed by ASCII. Interestingly, the performance for 
binary data is worse than random data especially for 
configuration 2.  

D. XIOPerf Results for lzo Compression  
Figures 8 through 12 show the performance of using 
compression driver using lzo algorithm on top of the TCP 
driver in Globus XIO relative to that of using TCP driver 
alone, for various types of datasets. The results are on the 
expected lines except that configuration 2 really did produce 
significantly lower results than configuration 1 at certain block 
sizes despite having much more powerful hardware. 
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Figure 8: Performance comparison of compression driver 
(lzo) + TCP driver with TCP driver alone for ASCII data 
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Figure 9: Performance comparison of compression driver 
(lzo) + TCP driver with TCP driver alone for Binary data 
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Figure 10: Performance comparison of compression  (lzo) 
+ TCP driver with TCP driver alone for MPEG data 
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Figure 11: Performance comparison of compression  (lzo) 
+ TCP driver with TCP driver alone for Random data 
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Figure 12: Performance comparison of compression  (lzo) 
+ TCP driver with TCP driver alone for Zero data 
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Figure 13: Compression driver overhead 

The driver has a mode where data is transferred without being 
compressed or modified. This represents the minimum amount 
of overhead that will be added due to the presence of the 
driver, regardless of which compression method is used and to 
what extent the data is compressible. As can be observed from 
Figure 13, the driver itself introduces very less overhead – less 
than 0.2% for block sizes 4KB or more – exceeds 1% only at 
block size 1KB. Values above zero should be regarded as 
random fluctuations - the driver cannot increase performance 
other than by compressing data. 

F. GridFTP results 
One of the features of GridFTP is that it can make use of 

multiple parallel streams. As each stream is a separate thread, 
this driver should theoretically see an increase in performance 
when used in a multi-core/multi-CPU setup. To test this 
theory, these tests were performed with GridFTP using four 
different degrees of parallelism. 

 

 

Figure 14: Performance of GridFTP with no compression   

 

Figure 15: Performance of GridFTP with compression 
driver (zlib) for different parallelism values 



 

Figure 16: Performance of GridFTP with compression 
driver (lzo) for different parallelism values 

G. Fluctuations in the Results 
As noted above, each test was run ten times and the result was 
taken as the average. A general pattern could be noted that the 
fluctuations would be greater for highly compressible data. To 
get a feel for the these fluctuations, Table 3 presents the 
differences found in the results for ASCII and MPEG data 
using zlib-compression, at a block size of 16KB. 

Table 3: Deviations in the results 

 

V. INTERPRETING THE RESULTS 
A number of useful conclusions can be drawn by looking at 
the data that has been collected. 
 

A. Effect on Network Load 
The compression ratios measured tells us two important things 
about the performance of the driver. The first is the impact on 
network load. For example, when transferring the binary file 
used in these tests using zlib compression network load is 
reduced to 38.76%, to 97.70% for the MPEG, and so on. This 
means that in congested network environments using this 
driver may have a fortunate side effect – Increase the 
performance even for other applications and hosts by reducing 
total network load. 
 

B. Effect on Host-to-Host Throughput 
The second thing we learn looking at the compression ratios is 

the maximum change in speed the driver can achieve. We will 
refer to this as the optimal speed multiplier and is calculated 
by 1 / compression ratio. 
Consider the following example, which matches the results for 
configuration 1 using zlib compression at a blocksize of 
16KB: 
• Throughput sans the compression driver is 90 Mbps. 
• Throughput with the compression driver is 139 Mbps. 
• Compression ratio is 0.0815. 
If we could use hosts with infinite CPU resources, the 
observed speed would be roughly 90 * (1/0.0815) = 1104 
Mbps. Of course, there is no such thing as a host with infinite 
CPU resources. But this is still useful knowledge, because it 
gives us an idea of when the local hosts will be the bottleneck, 
and when the network will. In this case the hosts are clearly 
bottlenecks by a wide margin since the observed result (about 
139 Mbps) is a far cry from the theoretical maximum (1104 
Mbps). Second, it let's us derive the average speed at which 
data is actually sent across the network by the formula ‘s/opt’, 
where s is the observed speed when using the compression 
driver, opt is the optimal speed multiplier described above 
(inverse of the compression ratio). Continuing the above 
example, this means that the break-even point between the 
hosts and the network being the bottleneck for ASCII data 
occurs when the network allows a throughput of 139*0.0815 = 
11.33 Mbps. Similarly, we can predict that the speed will 
remain fairly constant at around 139Mbps so long as network 
throughput remains above 11.33Mbps. 
 

C. Effect of Data Type 
The formula s/opt for describing at which network speed the 
local hosts ceases to be the bottleneck can also tell us 
conclusively that the more a particular type of data can be 
compressed, the more strain it puts on the local hosts: Above 
we concluded that the host in configuration 1 can only output 
11.33 m/s of compressed ASCII data to the network. Consider 
the following example from the same test setup (configuration 
1, 16KB block size, zlib compression), but transferring MPEG 
data, which is very difficult to compress further: 
• Throughput sans the compression driver remains 90Mbps. 
• Throughput with the compression driver is 91.70Mbps. 
• Compression ratio is 0.977. 
The formula s/opt yields that throughput should about 
89.29Mbps - meaning that the CPU in this case can output 
compressed data essentially as fast as the network can transmit 
it. The results support this conclusion - configuration 2 is not 
able to exceed these results noticeably despite having a 
considerably more powerful processor. 
 

D. Choice of the Compression Algorithm 
In general, zlib offers the best compression while LZO beats 
zlib by a wide margin when it comes to speed. Which library 
is to be preferred depends on the situation - if the network is 
the bottleneck by a wide margin, zlib will likely be the better 
choice. If not, LZO will produce better results. LZO can be 
considered the safer choice, since it is less likely to have a 



negative impact. Also note that there is no great difference in 
speed between configuration 1 and 2 at most block sizes when 
using LZO, except for ASCII and zero data. Identical 
performance tells us that the host CPUs were not bottlenecks 
in either case, even without doing the type of calculations 
described above - if they were, configuration 2 would have 
showed higher performance than configuration 1 due to the 
more powerful CPU. 
 

E. Effect of Block Size 
As noted above, compression algorithms perform differently 
depending on how much data they are fed at a time - the block 
size. Generally, this means that a higher level of compression 
will be achieved with larger block sizes. But, as we have 
concluded, higher compression level does not automatically 
translate into higher speeds. So which block size is to be 
preferred? When using zlib-compression the optimal block 
size seems to be 16KB, or possibly 32KB. LZO seems to 
perform better when the block size is bigger, with the notable 
exception of the drop in performance for configuration 2 at the 
highest block size for random and MPEG data. No answer has 
been found for why this drop takes place. Also note that these 
results may vary depending on hardware configuration - we 
cannot conclude from these results that 16KB will be the 
optimal size for zlib for all configurations. 
 

VI. FUTURE WORK  

A. Customizing the Driver 
Imagine you have a situation that matches that of 
configuration 1 using zlib compression - the driver is 
beneficial in some circumstances but detrimental in others. 
What you would want to do is add rules such as “only 
compress if block size is 4KB or larger, and if compression 
ratio is greater than 80%” which would mean that the driver 
would be detrimental under very few circumstances, if any. 
We plan to add the capability to allow this type of 
customization.  

B. Dynamically Determine the Compression Strategy 
We plan to add the ability to determine compression strategy 
dynamically. For example, do a test-compression of data using 
all available strategies and choose the one which gives the best 
ration. This should probably only be done once each transfer - 
if the first block compresses nicely, we can probably assume 
that the rest will also compress nicely. 
 

VII. SUMMARY 
We have developed a compression driver for the Globus XIO 
framework and presented a detailed performance study using 
different compression techniques for different hardware 
configurations. We have also showed how this driver can be 
used to compress the data on-the-fly for GridFTP transfers and 
how it can be used to speed up the transfers using parallelism 

to take advantage of the multiple cores in the hosts. Our results 
indicate that consistently higher speeds can be achieved across 
a 100Mbps LAN without using state-of-the-art CPUs, as long 
as the data sent is somewhat compressible. LZO is the 
preferred compression library in most situations. More 
compressible data does not automatically result in a speed 
increase, since more compressible data is also more 
demanding on the CPU. While the actual compression puts 
significant strain on the CPU, the driver itself adds very little 
overhead. 
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